27 research outputs found

    On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems

    Get PDF
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its associated labelled calculus

    Syntactic Cut-Elimination for Intuitionistic Fuzzy Logic via Linear Nested Sequents

    Full text link
    This paper employs the linear nested sequent framework to design a new cut-free calculus LNIF for intuitionistic fuzzy logic--the first-order G\"odel logic characterized by linear relational frames with constant domains. Linear nested sequents--which are nested sequents restricted to linear structures--prove to be a well-suited proof-theoretic formalism for intuitionistic fuzzy logic. We show that the calculus LNIF possesses highly desirable proof-theoretic properties such as invertibility of all rules, admissibility of structural rules, and syntactic cut-elimination.Comment: Appended version of the paper "Syntactic Cut-Elimination for Intuitionistic Fuzzy Logic via Linear Nested Sequents", accepted to the International Symposium on Logical Foundations of Computer Science (LFCS 2020

    A Contraction-free and Cut-free Sequent Calculus for Propositional Dynamic Logic

    No full text
    International audienceIn this paper we present a sequent calculus for propositional dynamic logic built using an enriched version of the tree-hypersequent method and including an infini-tary rule for the iteration operator. We prove that this sequent calculus is theoremwise equivalent to the corresponding Hilbert-style system, and that it is contraction-free and cut-free. All results are proved in a purely syntactic way

    Proof Theory

    No full text

    Nested sequents for the logic of conditional belief

    No full text
    International audienceThe logic of conditional belief, called Conditional Doxastic Logic (CDL), was proposed by Board, Baltag and Smets to model revis-able belief and knowledge in a multi-agent setting. We present a proof system for CDL in the form of a nested sequent calculus. To the best of our knowledge, ours is the first internal and standard calculus for this logic. We take as primitive a multi-agent version of the "comparative plausibility operator", as in Lewis' counterfactual logic. The calculus is analytic and provides a decision procedure for CDL. As a by-product we also obtain a nested sequent calculus for multi-agent modal logic S5i
    corecore